Electronic CounterMeasures (ECM)
ECM is the active part of EW and is intended to disrupt the surveillance systems of the enemy, whether by radar or radio communications, and also to counter any of his weapons which use electromagnetic, infrared or laser systems for guidance or aiming. There are two main methods of achieving this: by jamming, or by the use of decoys, both of which are effective when used properly. Many modern ECM equipment, particularly in the naval scenario, employ both methods in an integrated system.
Noise jamming is the use of transmissions to disrupt the enemy’s communications channels or to saturate his radar to obscure its target. Although this denies the enemy his information channels it also means that the jamming source cannot read the signals for intelligence purposes. Apart from this, modern frequency-agile communication systems are no longer easy to jam effectively.
Simple noise jamming is still in widespread use in the land warfare scenario, one important application being in remotely operated expendable jammers. These can be hand-emplaced, artillery-delivered, dropped from aircraft or used in unmanned aerial vehicles, and serve as short term jammers for a particular operation.
www.radartutorial.eu
Electronic Counter-CounterMeasures (ECCM)
Electronic
Counter-
Counter
Measures (
ECCM) is the method by which you endeavor to combat the ECM systems of the enemy by either making your equipment ECM-resistant or by using techniques to nullify his jamming and/or decoy systems. It is an extremely sensitive area in that any disclosure of ECCM measures designed into a system is likely to inform the enemy of its vulnerability to ECM.
Against jamming systems, the most commonly used method is frequency agility, whereby the transmissions are made to “hop” over a large frequency band in a random fashion. This means that either the jammer has to spread its power over the entire band with the inevitable loss of strength on any particular frequency, or it must attempt to follow the signal as it hops randomly.
The latest technique is the use of “stealth” techniques to combat the radar system. This is beginning to be employed in aircraft and consists of several methods to reduce the
radar cross section of the aim. The main techniques employed are
- to design the airframe itself to avoid sharp corners and flat surfaces which act as radar reflectors, and
- the use of radar-absorbent material which minimizes the amount of energy reflected back to the radar.
At the aircraft, the most important parts of the fuselage can be covered in radar-absorbent material to make it extremely difficult to detect.
Many anti-radiation missiles have been developed. The missile is passive in operation so that it cannot be picked up by ESM systems, and normally locks on to the
sidelobes of the radar transmission. The main countermeasures against this type of missile are low sidelobes, frequency agility, and the use of decoy transmitters which must be positioned close enough to the surveillance radar to “seduce” the missile but not so close as to endanger the main system.
www.radartutorial.eu
This is entirely a race between ECM and ECCM techniques. Kamikaze UAVs will one day have to be redesigned in accordance with invisibility technology and will target low observability. To ensure low RCS (radar cross section) values, we will see many changes such as material engineering (the widespread use of materials that absorb radar waves), designing the form of kamikaze UAVs accordingly, electrification of propulsion systems or the use of hybrid systems, etc. The future of anti-radiation kamikaze drones with a range of 50-60 km, also operating in passive mode, looks bright.
After the progress of countermeasure systems on the basis of both soft kill and hard kill systems, systems produced for simple but daily needs will be doomed to failure.
Therefore, it is unsustainable that today the costs for FPV kamikaze drones are in the range of a few hundred dollars. Because as the specificity of the applied technology increases, the unit cost will also increase. Therefore, projections that aim solely at quantitative density cannot have a future. Systems that can work effectively can only be projects that look for pinpoint vulnerabilities in target platforms and successfully close their own vulnerabilities against enemy countermeasure systems. This is only possible through specialization.