quite an interesting read sory for the google translation when ı have enough time ı may try to translate important parts. it provides a clear picture of exactly where we are, what we are working on and what we should do.
https://haber.aero/yazarlar/fahrett...-esasli-super-alasim-gelistirme-faaliyetleri/
In recent years, with the increasing efforts to develop aircraft engines in the country, the agenda for super alloys has started to emerge. Since nickel-based alloys are used extensively in aircraft engine structures, studies in the field of development and production of nickel-based materials should be started very quickly in our country. The realization of industrial-scale facilities is of great importance. In this sense, production should be done by concentrating on Inconel series alloys at the first stage. Otherwise, the investments made for the production of aircraft engines in our country may face difficulties due to possible material constraints that may be encountered in the coming periods. Since the design and production of aircraft engines includes very critical technologies, foreign dependency in this area should be brought to a minimum. A project was initiated by the Presidency of Defense Industries (SSB) at the end of 2017 for the development of Inconel 718 nickel-based super alloy, and this project is an important study initiated for the localization of engine materials. Thus, a critical step has been taken that will lead to the localization of other alloys.
As it is known, pure nickel production has started in our country. It is also very important to start the studies to prevent the current account deficit problem by using this production for domestic consumption and turning it into a final product. For this purpose, first of all, nickel should be alloyed and turned into a product with high added value. Although some gains are made by exporting the raw material produced in the current situation, the main target should be the domestic production of high-tech aircraft engines and gas turbines, in which nickel-based super alloy materials will be used, in terms of the interests of the country.
It is a fact that the improvements in the performance of the modern gas turbine engine, in which nickel-based super alloys are used, have been supported by the whole world since 1947, when the era of jet-powered civil aviation began. While a number of factors have contributed to the current importance of these alloys in relation to the development of design and manufacturing technologies, the development of alloys and the placement of the components made from them in the hottest parts of aircraft turbine engines is absolutely critical. As the chemical compositions of nickel-based superalloys have improved, the critical properties in creep and fatigue have improved significantly and turbine inlet temperatures have reached 1600 °C due to coaxial, single crystal and oriented solidification production methods and thermal barrier coating methods. It is important to consider the technological, economic and societal pressures driving these developments. Today, space and aviation technologies are used in many fields, from aircraft and defense systems for transportation and security purposes, to communication, energy, agriculture and astronomy studies. Especially with the creation of production technology accumulation of these alloys, nuclear and other power plants, aircraft engines, space shuttle engines, petrochemicals, ship engines, submarine engines, natural gas pumping engines will be mastered, and domestic technology and national talent will be minimized in these areas. will be won.
Although there are no commercial investments and mass production in our country, important studies have started to be made for the research, development and prototype production of materials used in aviation. Important studies are carried out in cooperation with TÜBİTAK Marmara Research Center (MAM), universities and private institutions, with the aim of developing casting and forging technologies of aluminum, titanium and super alloys, which are supported by SSB and used in original platform projects. As an example, the first and second stage turbine blades with and without cooling channels, which are the most important parts of the turboshaft engine developed by TEI for the GÖKBEY helicopter, one of the important platform projects of our country, are the TÜBİTAK MAM Materials Institute "High Temperature Materials, Research Development and Repair Excellence Center". production can be made. Today these blades are still used in the tests of the turboshaft engine. The technology gained for mass production is delivered to SSB as a technology information package. On the other hand, TÜBİTAK MAM Materials Institute is at the “High Temperature Materials, Research Development and Repair Excellence Center” for the production of nickel, cobalt-based super alloys and stainless steels, all of which are imported from abroad as raw materials or products, in aviation quality, high purity ingot form as raw materials. ” “triple melting” infrastructure has been established and today austenitic stainless steel and Inconel 718 alloy can be produced.
Parallel to the R&D and technology acquisition infrastructures, the infrastructures required for these technologies also attract the attention of private institutions.
Various infrastructures have started to be established and/or projected with internal incentives. Despite these developments, there are serious deficiencies in materials and test infrastructures in the aviation sector. Support should be continued considering the adaptability of these technologies for nuclear and space technologies.
As a result, the development of super alloys and the establishment of an institute that will contribute to the creation of the necessary infrastructure in this field in our country are of great importance. In addition, the capacities of high temperature, structural and mechanical test systems, which are critical for super alloys, are not sufficient. I am of the opinion that our technology maturity level will rise in a very short time with the expert staff to be formed in this field and the studies to be carried out. Especially today, when the use of 5th and even 6th generation single crystal superalloys is started, it is important to take action very quickly. For this reason, this institute should be put into practice and studies should be started without wasting any time. It is of great importance to accelerate the localization processes of super alloys and other aerospace materials in order to realize our country's aviation and space industry goals and to become one of the strongest countries in the world by removing our dependence on foreign countries. In this context, necessary feasibility studies should be carried out and emergency action plans should be prepared. According to these prepared plans, necessary investments should be made and competent human resources and infrastructures should be established in this field.